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The TOPOS program package was used to generate all subnets of 3- to 12-

coordinated binodal nets taken from the Reticular Chemistry Structure

Resource database. 38 304 binodal nets with novel topologies were revealed

and stored in the TTD collection. A new invariant, the adjacency matrix of the

shell graph of a node, is proposed to distinguish the node local topology. With

this invariant, the first six examples of binodal-quasi-uninodal nets were

discovered. 4604 organic and metal-organic frameworks were analyzed to find

examples of the topologies generated. It was shown that many edge-transitive

nets as well as unknown topologies occur in crystal structures.

1. Introduction

Topological descriptions of crystal structures as a whole are

becoming increasingly popular in modern crystal chemistry.

One of the most natural, simple and powerful models to be

used in this field is the net (Klee, 2004; Eon, 2005; Delgado-

Friedrichs & O’Keeffe, 2005). This model usually ignores the

geometrical parameters of an atomic array (such as inter-

atomic distances and bond and torsion angles) and focuses on

the overall structure connectivity (Wells, 1977; Öhrström &

Larsson, 2005; Carlucci et al., 2007). The initial geometrical

data (the space-group symmetry, unit-cell dimensions and

atomic coordinates) together with knowledge of the chemi-

cally relevant interactions are sufficient to build the net. As

this experimental information is the most reliable, the

resulting net can also be considered to be one of the most

robust topological descriptors for the structure. A further

advantage of this approach is that the net concept can

easily be coded, as realized in several computer packages

[Gavrog Systre (http://www.gavrog.org), Olex (http://

www.olex2.org), TOPOLAN (http://www.adam.ntu.edu.sg/

~mgeorg), TOPOS (http://www.topos.ssu.samara.ru)] and

databases [EPINET (Euclidean Patterns in Non-Euclidean

Tilings, http://epinet. anu.edu.au/), RCSR (Reticular Chem-

istry Structure Resource, http://rcsr.anu.edu.au/), TTD and

TTO (TOPOS, Topological Databases and Topological Types

Observed, http://www.topos.ssu.samara.ru)]. Using these tools

a crystal chemist can now easily separate and identify nets.

If we ignore incommensurate and quasicrystal phases, the

structure of a crystal is three-periodic and hence can be

described by a three-periodic graph, i.e. a graph with trans-

lational symmetry in exactly three independent directions.

Thus three-periodic nets are of special interest in crystal

chemistry [the notion graph is wider than net; a net is an n-

periodic simple (without loops and multiple edges) undirected

connected graph] (Delgado-Friedrichs et al., 2005). Inciden-

tally, nets with a lower periodicity, well known to mathema-

ticians (Grünbaum & Shephard, 1987), have been studied

much less in crystal chemistry (Koch & Fischer, 1978;

O’Keeffe & Hyde, 1980; O’Keeffe, 1992).

O’Keeffe has gathered many nets crucial for crystal chem-

istry since the beginning of the century in the RCSR database

(Ockwig et al., 2005; O’Keeffe et al., 2008). This work has

encouraged systematic investigations of crystal-structure

topologies in organic, inorganic and metal-organic compounds

(Blatov et al., 2004; Baburin et al., 2005, 2008a,b; Blatov &

Peskov, 2006; Baburin & Blatov, 2007; Baburin, 2008). Most of

the results of these studies are collected in the TTO database,

although the number of structures processed is less than 5000.

However, this now allows one to draw some conclusions about

the occurrence of various topologies. Thus, in valence-bonded

interpenetrated inorganic and metal-organic frameworks, as

well as in single metal-organic frameworks, the three most

preferred topological motifs1 are dia (4/6/c1), pcu (6/4/c1) and

srs (3/10/c1) (Blatov et al., 2004; Ockwig et al., 2005; Baburin et

al., 2005). In organic molecular crystals with hydrogen-bonded

single networks the results are similar: dia, pcu, sxd (6/3/o1)

and hex (8/3/h4) (Baburin & Blatov, 2007); for hydrogen-

bonded coordination compounds they are pcu, bcu (8/4/c1),

hex and dia (Baburin, 2008; Baburin et al., 2008a,b). Thus,

nature chooses the same topological motifs; moreover, all of

them are sphere packings [cf. Koch et al. (2006) and references

therein].

The question as to why some nets occur more frequently in

crystals has still not been answered. O’Keeffe and co-workers

(Ockwig et al., 2005; Delgado-Friedrichs et al., 2006, 2007)

1 Hereafter, the RCSR three-letter symbols (if available) are used to designate
net topologies. Fischer’s symbols k/m/fn (Koch et al., 2006) are given for sphere
packings along with the RCSR symbols.



assumed that such nets should be topologically the simplest; in

particular, they should have a minimal number of inequivalent

nodes and/or edges as well as the highest possible symmetry at

the nodes (we prefer the term ‘node’ instead of ‘vertex’ for

nets). Indeed, the most frequent nets observed for metal-

organic frameworks and hydrogen-bonded supramolecular

assemblies are uninodal (vertex-transitive), i.e. have one kind

of node, and all but hex and sxd are edge-transitive (with one

kind of edge). However, many other uninodal and/or edge-

transitive nets are not so abundant, so a close inspection of

node symmetries is required to ascertain whether this rule is

sufficient. The opposite question is important as well: why do

some nets never or rarely occur in nature? To answer this

question, the list of natural nets should be extended with

artificial nets generated by some tailored methods. In this case,

the methods for producing the nets both ab initio and in

relation to the natural nets are important. The largest project

for generating ab initio nets is EPINET (Hyde et al., 2006;

Ramsden et al., 2009) where three-periodic nets are derived

from two-dimensional hyperbolic tilings irrelevant to real

crystal structures. Studying the occurrence of EPINET nets

shows how stochastic the realization of topological motifs in

crystals is. However, nobody has yet performed such an

analysis. The most exciting example of producing artificial nets

related to real crystal structures is the Atlas of Hypothetical

Zeolite Frameworks [http://www.hypotheticalzeolites.net

(Treacy et al., 2004; Delgado-Friedrichs & O’Keeffe, 2005)]. In

this case, the generated nets are to obey some geometrical

criteria relevant to zeolite structures.

In the first paper of this series, Blatov (2007) proposed one

more method for obtaining new nets that are possibly relevant

to crystal structures. Starting from a frequently occurring net

in a maximum-symmetry Euclidean embedding and consid-

ering all possible ways of decreasing the symmetry and coor-

dination of the net, one can obtain all of its subnets with a

given number of inequivalent nodes. With a tailored proce-

dure of the TOPOS program package, Blatov (2007) collected

all 5278 uninodal subnets of the RCSR uninodal nets. Some of
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Figure 1
The procedure for deriving two subnets (3,4) and (3,5)-coordinated from (4,6)-fsc. For each subnet (top left and bottom right) we also show the Systre-
optimized embedding (center top and bottom) and one real example [LUZYUA, MICDUX and QOBHEU10 are Zn2X2(ethylenediamine), X = S, Se,
Te; DOQRUW is Mn(H2O)(fumarato)(4,40-bipy)]. See text for further details.



the novel nets were shown to be of potential interest for

crystal chemistry. At that time, there were no data for their

occurrence and other important RCSR nets, binodal and edge-

transitive nets, were not treated. In this paper we will consider

these two classes of nets with particular interest in their

realization in nature.

2. Generating subnets

To derive all subnets with a given number of inequivalent

nodes for a particular net we have used the two-step algorithm

proposed by Blatov (2007). Starting from an initial three-

periodic net N with a space group G we considered all ways of

decreasing its symmetry following the list of all translation-

equivalent and class-equivalent subgroups of G that kept the

number of inequivalent nodes of N. Then we enumerated all

ways of breaking edges in N as well as in its low-symmetry

mappings. As a result, nets of different periodicity were

obtained; we kept only three-periodic nets. If the resulting

subnet had a Euclidean embedding with a higher space-group

symmetry [as can be proved with the Systre program

(Delgado-Friedrichs & O’Keeffe, 2003)], the generating

procedure was repeated for the most symmetric mapping of

the subnet. In this case, some additional topologies were

obtained as subnets of this symmetrized mapping; these could

not be derived directly from the initial net. By removing some

sets of edges from the initial net we obtain such subnets only in

a low-symmetry embedding with a larger number of inequi-

valent nodes than in the initial net, so an additional step of

symmetrization of the subnet embedding is always required.

We shall call such subnets indirectly generated, unlike directly

generated subnets produced by one step of the generating

procedure. The number of indirectly generated subnets is

rather large, for example among the 5278 uninodal nets with

novel topologies described in the first paper of this series

(Blatov, 2007) there are 969 such nets (18.3%). However, the

role of indirectly generated nets in crystal chemistry seems less

important, since a more complex topological transformation

leads to such nets (they have a small net relation graph degree,

see x4 below). The TOPOS program package and TTD

collection were used to produce all subnets and to determine

their topologies.

In the set of initial nets N we included all 414 binodal nets

with a node degree not larger than eight collected in the

RCSR database (release of October 2007); among them there

are 27 edge-transitive nets (Delgado-Friedrichs et al., 2006;

Delgado-Friedrichs & O’Keeffe, 2007). The eight edge-

transitive nets with a higher node degree (3,12-coordinated ttt;

4,12-coordinated ftw, ith, shp; 6,12-coordinated alb, mgc; 3,24-

coordinated rht; 4,24-coordinated twf) were considered as

well. Thus, we have examined all known binodal edge-

transitive nets along with the most crystallochemically signif-

icant 3–8-coordinated binodal nets, as these coordinations are

typical for metal-organic frameworks. Note that the RCSR

database contains only 17 binodal nets that are not edge-

transitive and have a node degree larger than eight (9–20).

[These are (9,20)-alb-x, (6,18)-ast-d, (12,14)-bet, (12,15)-cla-d,

(5,10)-fit, (3,9)-gfy, (10,12)-mbc, (12,16)-mgc-x, (8,14)-reo-d,

(12,12)-tcj, (12,12)-tck, (12,12)-tcl, (12,12)-tcm, (10,10)-tcn,

(10,10)-tco, (9,20)-tsl, (3,9)-xmz. Hereafter the node degrees

(n,m) are shown in parentheses before the symbol.]

From these 422 nets all subnets were derived (103 uninodal,

which include 20 interpenetrated arrays, and 4024 binodal, of

which 133 were interpenetrated), among which we found 3397
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Table 1
The 225 EPINET nets inequivalent to RCSR nets found among the subnets generated.

Node
degrees No. Net name

3, 3 35 sqc326, sqc946, sqc3051, sqc3053, sqc3058, sqc5599, sqc5600, sqc5601, sqc5602, sqc9243, sqc9247, sqc9248, sqc9250, sqc9252, sqc9264,
sqc9267, sqc11250, sqc11253, sqc11254, sqc11255, sqc11257, sqc11261, sqc12871, sqc12874, sqc12881, sqc13759, sqc13771, sqc13774,
sqc13776, sqc14290, sqc14292, sqc14293, sqc14294, sqc14297, sqc14298

3, 4 90 sqc74, sqc185, sqc188, sqc476, sqc515, sqc519, sqc522, sqc1255, sqc1374, sqc1383, sqc1388, sqc1425, sqc1426, sqc1427, sqc1429, sqc1431,
sqc1436, sqc1441, sqc2196, sqc2205, sqc2209, sqc3681, sqc3705, sqc3852, sqc3853, sqc3880, sqc3881, sqc3890, sqc3895, sqc3896,
sqc4674, sqc4709, sqc5594, sqc6667, sqc6855, sqc6856, sqc6930, sqc6934, sqc7386, sqc8168, sqc8169, sqc8170, sqc8171, sqc9849,
sqc9903, sqc9904, sqc9912, sqc9916, sqc10089, sqc10093, sqc10103, sqc10603, sqc10611, sqc10615, sqc10660, sqc10667, sqc11155,
sqc11240, sqc11241, sqc11249, sqc11984, sqc12015, sqc12018, sqc12019, sqc12020, sqc12028, sqc12029, sqc12251, sqc12269, sqc12277,
sqc13150, sqc13541, sqc13993, sqc13996, sqc13997, sqc14002, sqc14004, sqc14015, sqc14016, sqc14018, sqc14019, sqc14134, sqc14135,
sqc14139, sqc14149, sqc14150, sqc14389, sqc14390, sqc14396, sqc14397

3, 5 19 sqc138, sqc689, sqc707, sqc1743, sqc1744, sqc2115, sqc2154, sqc2281, sqc2155, sqc5478, sqc5941, sqc7845, sqc7846, sqc8008, sqc8009,
sqc8010, sqc8011, sqc8013, sqc12425

3, 6 14 sqc27, sqc251, sqc293, sqc294, sqc892, sqc893, sqc962, sqc2403, sqc2983, sqc2984, sqc2985, sqc5381, sqc8925, sqc11083
3, 8 2 sqc494, sqc7928
4, 4 19 sqc466, sqc967, sqc2186, sqc2188, sqc2189, sqc3818, sqc3848, sqc3868, sqc5553, sqc5567, sqc8092, sqc8105, sqc8112, sqc13484, sqc13489,

sqc13496, sqc13497, sqc13505, sqc13511
4, 5 19 sqc278, sqc280, sqc847, sqc932, sqc955, sqc1101, sqc1253, sqc2481, sqc2482, sqc2484, sqc2644, sqc2996, sqc3986, sqc3989, sqc5464,

sqc6809, sqc6814, sqc6815, sqc9092
4, 6 12 sqc374, sqc502, sqc645, sqc1245, sqc1730, sqc3754, sqc3793, sqc4582, sqc4588, sqc4595, sqc4596, sqc6738
4, 7 1 sqc1858
4, 8 3 sqc934, sqc1964, sqc1990
5, 5 3 sqc3254, sqc5617, sqc7317
5, 6 3 sqc1067, sqc7877, sqc8329
5, 8 3 sqc1330, sqc6767, sqc6771
6, 8 2 sqc1854, sqc1954



topologically distinct nets (82.3%) not contained in the data-

bases EPINET, RCSR and TTD, including 496 indirectly

generated nets (14.6%). All the new nets but one correspond

to binodal nets; the only novel uninodal subnet is 3-

coordinated with vertex symbol [6.124.124]. No new edge-

transitive nets were revealed. To designate subnets we have

used s-d-G-n symbols (Blatov, 2007), where s is the conven-

tional name of the initial net, d is a set of ascending integers

equal to the degrees of all inequivalent nodes in the subnet, G

is the space group for the most symmetrical embedding of the

subnet and n is optional and enumerates non-isomorphic

subnets with a given s-d-G sequence. For example, the symbol

stc-5,6-C2/m-1 encodes a 5,6-coordinated subnet of the 6,6-

coordinated RCSR net stc; the highest possible symmetry of

the net in Euclidean space is C2/m; there are other stc subnets

with the same symmetry and node degrees; this one is the first

net in the list.2 Fig. 1 illustrates the procedure for deriving two

subnets from (4,6)-fsc (see also Table 5 below); both subnets

with the embedding of the original net as well as the Systre-

optimized net are compared with one real example. Here we

also show one case where the space group/embedding of the

net in Systre (fsc-3,5-P4/mbm) differs from the one directly

derived by the removal of some edges (fsc-3,5-Pnma): more-

over the real structures often have another embedding (with

different space group, as for DOQRUW) but the underlying

topology is preserved.

We consolidated all the initial nets with their subnets in a

net relation graph (NRG), which shows pathways linking

different topologies (Blatov, 2007). In total there are 4127 nets

in the NRG, 3974 single and 153 interpenetrated, 4024 binodal

and 103 uninodal, including the 3397 novel nets (82.3%). Most

of the known 577 single nets (14.5%) are listed in the RCSR

database (334), but there are also 225 EPINET nets (Table 1)

and 18 TTD nets not reported among the RCSR nets

[AFUQOH, B2O3 (high pressure) (34685), CaCl2 (86209),

Cs2Se (41687), Cu2S (16550), Cu3As (100149), ENCDNB01,

INIQUR, LEJCAE, Mg2C3 (71941), NiP (27159), ScD0.33

(46032), SiO2 (56684), SnF2 (14194), TiSi2 (96029), two uni-

nodal sphere packings (3/8/c3 and 3/8/t7) and the minimal net

4(3)4]. [If a TTD net occurs in a real structure, it is identified

by a refcode or collection code from the Cambridge Structural

Database (CSD) or the Inorganic Crystal Structure Database

(ICSD), respectively. Sphere packings are considered in detail

by Koch et al. (2006) and minimal nets by Beukemann & Klee

(1992) and Bonneau et al. (2004). All the TTD nets are

simplified structures of inorganic or metal-organic frame-

works; the simplification corresponds to the so-called standard

representation (see x3).]

We have also treated all ten non-edge-transitive binodal

RCSR nets containing 9–12-coordinated nodes; among them

there are 12-coordinated close sphere packings [tcj (hc), tck

(hcc), tcl (hhc) and tcm (hhcc)]. As expected, the number of

subnets for these nets is much larger; many of them have
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Table 2
Binodal-quasi-uninodal nets.

Refined unit-cell dimensions and node positions were obtained using Systre. The length of contacts between nodes is 1 Å.

Initial
net

Transformation sequence and
resulting space group

Node degrees,
D ðn:NnÞ

Net name,
Transitivity pq†

a (Å),
x1,
x2

b (Å)/� (�),
y1,
y2

c (Å),
z1,
z2

cbo-e Pa�33 3, 3 cbo-e-3,3-Pa�33‡ 4.000 4.000 4.000
(6:78) 23 0.2502 0.2918 0.4949

0.0418 0.4925 0.2480

mbc Cmcm! C2221! P21212 (b, c, a; 1/4, 0, 0) 7, 7 mbc-7,7-P21212 5.297 1.308 1.000
(1:7) 28 0.6786 0.2500 0.0027

0.4286 0.2500 0.5027

mbc Cmcm! Cmc21! Pca21 (�b, a, c; 1/4, 1/4, 0) 9, 9 mbc-9,9-Pca21 5.975 1.000 1.000
(1:9) 29 0.9408 0.7500 0.2500

0.1775 0.7500 0.2500

tcj P63/mmc! Cmcm (�a � b, a � b, c)! Pnma (b, c, a)! 9, 9 tcj-9,9-Pna21‡ 1.732 1.000 3.266
Pna21 (a, �c, b) (1:9) 29 0.6667 0.0000 0.2500

0.5000 0.5000 0.5000

tcm R�33m! C2/m [(1/3)a � (1/3)b + (2/3)c, �a � b, 9, 9 tcm-9,9-P21/c‡ 3.365 1.000/106.8 1.982
(1/3)a � (1/3)b � (1/3)c]! P21/c (�c, �b, �a) (1:9) 2(10) 0.3840 0.1839 0.3034

0.1160 0.3161 0.4174

tco Cccm! Ama2 (c, a, b; 0, 0, 1/4)! Pna21 (0, 1/4, 0) 9, 9 tco-9,9-Pna21‡ 3.821 1.000 1.674
(1:9) 29 0.2790 0.0963 0.2767

0.0290 0.2500 0.1259

† p and q are the numbers of different kinds of topologically non-equivalent nodes and edges in the net (cf. Ockwig et al., 2005). ‡ Binodal sphere packing.

2 The crystallographic data for all 99 new binodal nets mentioned in this paper
are available as a TOPOS database and a text file in Systre input format from
the IUCr electronic archives (Reference: EO5002). Services for accessing
these data are described at the back of the journal.



combinations of node degrees that are unusual for chemical

compounds, for example (7, 8), (9, 11) etc. For this reason the

remaining seven binodal RCSR nets with node degrees larger

than 12 (alb-x, ast-d, bet, cla-d, mgc-x, reo-d, tsl) were not

considered. Moreover, only directly generated subnets were

analyzed for the ten 9–12-coordinated nets and among them

there are 34 907 novel topologies. These topologies were not

included in the NRG since most of them are not so important

for crystal chemistry, otherwise they would have appeared

among the subnets generated from the 422 nets in the sample

used. Nonetheless, all the 3397 + 34 907 = 38 304 novel

topologies have been stored in the TTD collection and are

available at http://www.topos.ssu.samara.ru. Among them

there are 5959 n-regular binodal nets (15.5%) with the same

coordination for both nodes (273, 586, 639, 1365, 1246, 1181,

468, 178 and 23 nets for the n,n-coordination, n = 3–11

respectively); we may also call them coordinatively uninodal

or homocoordinated. In some exceptional cases n-regular

binodal nets have a stronger similarity with uninodal nets, as

can be seen if we consider other net invariants.

3. Degree of similarity between nodes: the rare
binodal-quasi-uninodal nets

Following Blatov (2007), to determine the net topology we

have used three invariants: (i) the coordination sequence

{CSk}, k = 1–10; (ii) the vertex symbol collecting the size and

number of shortest rings (cycles that are not sums of two

smaller cycles) meeting at angles of nodes; (iii) the vertex

symbol for cycles collecting the size and number of shortest

cycles in the net. As mentioned by Blatov (2007), no examples

of non-isomorphic nets are known with all the invariants

equivalent. However, we have discovered six n-regular

binodal nets with two topologically different nodes that have

the same set of the three invariants and so very similar local

topologies. Thus, it is reasonable to call them binodal-quasi-

uninodal; they are gathered in Table 2. We also add the

transitivity pq, where p and q are the numbers of different

kinds of topologically non-equivalent nodes and edges in the

net (cf. Ockwig et al., 2005) as a rough measure of the

complexity of the net; for example, edge-transitive nets have

small transitivity values of 11 or 21.

The topological difference between the nodes in the six nets

was found with Systre, which uniquely proves the isomorphism

of crystallographic nets without collisions (Delgado-Friedrichs

& O’Keeffe, 2003). The topological difference can also be

demonstrated with one more invariant, the cycle sequence

(Beukemann & Klee, 1994; Thimm & Klee, 1997), which

extends the vertex symbol for cycles to all cycles up to a given

size and can be computed with TOPOS.3 To study the nets in

more detail, and to find a new invariant, we have implemented

in TOPOS a procedure for searching for any kind of finite

subgraph in a net; this procedure was used to compare shell

graphs for inequivalent nodes. A shell graph SGn is a graph

obtained by successive growth of n coordination shells around

a given node; it consists of Nn ¼
Pn

k¼1 CSk nodes plus the

origin and is unambiguously determined by its adjacency

matrix. The adjacency matrix of a shell graph is a stronger

invariant than the invariants mentioned above; the

isomorphism of SGn for given nodes means that the nodes are

topologically equal within the first n shells; for complete

isomorphism the nodes are topologically equivalent up to n =

1. The degree of similarity (D) for the nodes can be

expressed as n:Nn, where both numbers relate to the largest

equal shell graph; the larger both numbers are, the closer the

similarity. In this respect, the most similar are the nodes in

cbo-e-3,3-Pa�33 with D = (6:78) (Table 2, Fig. 2), i.e. their shell

graphs are locally isomorphous within the first six coordina-

tion shells and contain N6 + 1 = 79 nodes; the strict similarity in

the other nets is limited by the first coordination shell, n = 1, D

= (1:N). Obviously, the quantity D can also be used to

compare nets; the larger the D values for corresponding nodes

of the nets are, the more similar are the nets. Let us emphasize

that unlike the invariants relating to cycles, the degree of

similarity can be used not only to find the net isomorphism,

but also to explore the local topological sameness of nets.

For the moment, binodal-quasi-uninodal nets are unknown

in crystals; however, binodal nets with a high D exist. Probably

the most exciting example is the crystal structure of bis(�3-

imidazole-4,5-dicarboxylato)-(�2-4,40-bipyridine)-diaqua-tri-

zinc (XECBOX, Fig. 3a) (Lu et al., 2006). Considering Zn

atoms and centroids of ligands as nodes we obtain a net (Fig.

3b) that can be simplified further by removing dangling water

molecules and converting bridge bipyridine and Zn nodes into
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Figure 2
Two examples of the binodal-quasi-uninodal nets from Table 2.

3 The cycle sequences computed with TOPOS for the six nets are given in the
supplementary material.



edges (Fig. 3c). We call this simplified representation of a

framework standard because it naturally follows the chemical

description of coordination compounds made of metals plus

ligands, so nodes are assigned both to metals and ligands.

Standard representations can be obtained by TOPOS in an

automated mode. The resulting net is 3,3-coordinated binodal

with nodes corresponding to imidazole-4,5-dicarboxylato

ligands and Zn atoms. It is among the NRG nets and can be

derived from the (10,12)-mbc net, hence the symbol is mbc-

3,3-P21/c. Both vertex symbols (for rings and for cycles) for

the two nodes are [10.10.103], but coordination sequences

differ starting from the eleventh shell, so the net is not

binodal-quasi-uninodal. However, D = 9:702, so the nodes are

locally strongly similar, up to the ninth shell, and play almost

the same role in the net.

4. Topological relations between binodal nets

As mentioned by Blatov (2007), the crystallochemical signif-

icance of a net is reflected in the role that the net plays in the

NRG. If other factors are equal, the nets with large NRG

degrees have a higher probability of occurring in nature

because they are related to many other nets and have a lot of

ways to be transformed to/from other topologies. In Table 3

the single nets with the largest NRG degrees (>50) are

collected and in Fig. 4 we show the embeddings for the first six.

Note that, compared to uninodal nets (Blatov, 2007), inter-

penetrated arrays are not as significant in the NRGs of binodal

nets; the largest degree (40) belongs to (3,6)-sit twofold

interpenetrated.

As for uninodal nets, the occurrence of binodal nets

depends on the node degree; the most frequent combinations
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Figure 3
Different representations of the XECBOX crystal structure. (a) Initial
framework; (b) simplified net with the centroids of imidazole-4,5-
dicarboxylato (yellow balls), 4,40-bipyridine (grey ball) and aqua (black
balls) ligands; (c) standard representation as mbc-3,3-P21/c obtained from
(b) by removing dangling water ligands and contracting bridge bipyridine
and Zn nodes into edges; (d) idealized mbc-3,3-P21/c net.

Table 3
The binodal nets with large NRG degrees (>50).

Net Transitivity pq Node degrees NRG degree

cbs 26 5, 7 386
sqc374 26 4, 6 250
alb† 21 6, 12 228
fsg (sqc10)† 24 4, 6 187
cbs-5,6-Cmmm 26 5, 6 184
cbs-4,7-Cmmm 26 4, 7 175
stc‡ 23 6, 6 169
lib‡ 24 6, 6 144
crs-d (sqc870) 22 4, 8 134
hbr‡ 23 8, 8 124
cor-e‡ 28 7, 7 102
seh‡ 22 6, 8 102
cbs-5,6-Pmma 27 5, 6 99
fit-e‡ 23 7, 8 98
cbs-5,6-Pmna 27 5, 6 96
nbo-x-d 22 8, 8 95
cbs-4,7-Pmna 27 4, 7 92
cbs-4,7-Pmma 27 4, 7 89
fsx 23 5, 6 88
sqc1067‡ 24 5, 6 83
fsc (sqc11)† 22 4, 6 78
crb-e‡ 23 6, 6 73
stc-5,6-C2/m-1‡ 25 5, 6 73
stc-5,6-C2/m-2‡ 25 5, 6 73
cbs-4,5-Cmmm‡ 25 4, 5 71
scu (sqc170)†‡ 21 4, 8 68
rho-e‡ 24 6, 6 65
neb-e‡ 24 6, 6 62
gis-e‡ 24 6, 6 59
sqc280 25 4, 5 58

† Occurs in crystal structures. ‡ Binodal sphere packing.



typical for metal-organic frameworks correspond to small

node degrees of 3, 4 or 6. Many nets in Table 3 have other

node degrees, therefore in Table 4 we collect the first ten nets

with the largest NRG degrees for some typical coordinations

and in Fig. 5 we show one net for each coordination. Note that

among the nets in Tables 3 and 4 there are many binodal

sphere packings, i.e. embedding of the type 1a or 1b (Delgado-

Friedrichs & O’Keeffe, 2005). Let us emphasize that unlike

uninodal sphere packings, which have been intensively studied

for years [Koch et al. (2006) and references therein], polynodal

sphere packings have not been considered in the literature,

although some of them are collected in the RCSR database.

There are obvious correspondences between nets in Tables 3

and 4: many nets with novel topologies are subnets of the nets

with a large NRG degree, such as cbs, fsc, fsg, seh, stc. Thus,

some nets can be crystallochemically significant indirectly: the

nets themselves do not occur in nature, but their subnets do.

At the same time, some nets with a large NRG degree do not
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Figure 4
Six Systre-idealized nets with highest NRG degree taken from Table 3.

Figure 5
Six selected representatives of 3, 4 and 6-coordinated nets from Table 4.

Figure 6
(a) The ideal crs-d-3,5-Pnma net with the one observed in four
(cobalamine)X(LiCl)2, X = N3�, Cl�, NO3�, CN� (refcodes GIZYOD,
GIZYUJ, HUSPAM, WIKXUJ); the 5-coordinated node represents the
cobalamine and the 3-coordinated node represents the Li. (b) The ideal
seh-4,6-Imma net with the one observed in two M(OH)(1,4-benzenedi-
carboxylato) complexes, M = Cr3+, Al3+ (refcodes MINVUA, SABVUN;
the bridging oxygen is shown in red).



produce crystallochemically significant subnets of novel

topology; among them there are sqc374, lib and hbr.

5. Occurrence of the binodal nets in metal-organic
frameworks

For the moment, there are no comprehensive data on the

occurrence of binodal nets in crystal structures. Ockwig et al.

(2005) listed examples of n-regular binodal nets and found

more than one example for the 3-coordinated (3-regular) nets

nof and noj, 4-coordinated pts and mog, 5-coordinated nok

and 6-coordinated nia; four of them, nof, pts, nok and nia, are

among the significant NRG nets (see Table 4; indeed nok

occupies the fourth place among the 5,5-coordinated nets). To

assess the occurrence of other binodal nets, the total file of

crystallographic data on inorganic and metal-organic frame-

Acta Cryst. (2009). A65, 202–212 Blatov and Proserpio � Topological relations between three-periodic nets. II 209

research papers

Table 4
A selection of binodal nets with node degrees 3, 4 or 6.

Node degrees 3, 4 or 6 are typical for coordination compounds. The ten nets with the largest NRG degree for each class are listed.

Net
Transitivity
pq

NRG
degree Net

Transitivity
pq

NRG
degree Net

Transitivity
pq

NRG
degree

3,3-coordinated (3-regular) nets 3,6-coordinated nets 4,6-coordinated nets

cbs-3,3-Cmcm† 24 28 cbs-3,6-Cmme† 27 37 sqc374 26 250
baf-3,3-I4/mmm† 23 27 ant†‡ 22 27 fsg (sqc10)‡ 24 187
baf-3,3-Imma 24 26 cbs-3,6-Cmmm-1 25 20 fsc (sqc11)‡ 22 78
cbs-3,3-C2/m-2† 25 23 cbs-3,6-Cmmm-2 26 19 stc-4,6-P�33m1† 23 46
bbe-3,3-Imma† 23 22 mgc-3,6-I4122 22 18 stc-4,6-R�33m 23 46
cbs-3,3-Pmna† 25 21 rtl†‡ 22 16 cbs-4,6-Pmma 26 36
iph† 23 21 sqc251 25 16 cbs-4,6-Pmmn 26 33
fsg-3,3-Fddd† 23 17 sqc2983 25 16 cbs-4,6-Imma 27 33
nof† 23 17 cbs-3,6-Cmcm-1 26 15 fsd (sqc61)† 23 32
fry-3,3-C222† 25 16 cbs-3,6-Cmcm-2 26 15 sqc502†‡ 22 32

3,4-coordinated nets 4,4-coordinated (4-regular) nets 6,6-coordinated (6-regular) nets

cbs-3,4-Pmma 25 38 cbs-4,4-Imma-1† 26 19 stc† 23 169
cbs-3,4-Cmmm-1 25 28 cbs-4,4-Cmcm† 26 16 lib† 24 144
cbs-3,4-Cmmm-2 24 25 baf† 25 15 crb-e† 23 73
fry† 25 24 ful† 27 14 rho-e† 24 65
tfi (sqc515)†‡ 22 23 mog-e-x-z-4,4-I4/mmm† 24 14 neb-e† 24 62
bbe-3,4-Cmmm† 23 22 bcp† 24 13 gis-e† 24 59
cbs-3,4-Cmme† 25 20 bcq (sqc941)† 24 13 sta† 22 48
cbs-3,4-Fmmm† 25 18 fvq† 27 13 stb† 22 48
sqc1255 24 18 mot (sqc29)‡ 22 13 nia†‡ 21 39
sqc185† 22 18 pts (sqc183)†‡ 21 13 mhg† 25 29

† Binodal sphere packing. ‡ Occurs in crystal structures.

Table 5
Seventy-six metal-organic frameworks with the (4,6)-coordinated fsc and derived new topologies.

Topology
Transitivity
pq No. Refcode from CSD

fsc 22 25 AGPYRZ01, DEKHEH, DEKHUX, DEQVIF, DOYLAE, DOYLIM, EJAXAO, GIFKAH, GIFKEL, GIFKIP,
IGAHED, KAHPUE, KONYOB, NARCUF, OLOKEF, RABGUS, RABHAZ, RABHIH, SARNEF, SOVHAM,
SOVHIU, SOVHOA, TEHLUO,† WACJUG, ZURQOS

fsc-3,4-Pbca 24 10 EXEMAV, HACPOR, LUZYUA, MICDIL, MICDUX, QESPIO, QOBHEU01, VAMWAI, VAMWEM, XAGTEE
fsc-3,5-P4/mbm 23 9 DOQRUW, EVOMOR, HAOAER, LARMUN, NETFAU, NETFEY, OBUFEX, OGEYII, YAHPED
fsc-3,4-Imm2 23 8 EJOZAE, EJOZEI, GACQUX, IRIWEL, OJOBIY, SANBOZ, SANBUF, XUHSOI
fsc-3,4-Pnma 24 6 ESIGES, LEGGIO, LOPSIS, LOPSOY, NAXMAB, PEPBAO
fsc-4,5-Cmmm 22 4 NIVWIY, OCUSIP, XEHFUL, XOMCIL
fsc-3,5-Pbcm 24 3 MIYZEZ, XARNOU, XARPAI
fsc-3,4-Pbcn-2 24 2 JOVDON, VODSEM
fsc-3,5-Cmce-2 24 2 AXIMUP, BARJIO
fsc-3,4-C2/c 24 1 NERMON
fsc-3,4-I41/amd 23 1 LEGHIP
fsc-3,4-Iba2 24 1 MAYYER
fsc-3,4-Pbcn-1 24 1 ACUXAY
fsc-3,4-Pbcn-3 24 1 ECIVOB01
fsc-3,5-C2/c 25 1 TEDDOW
fsc-3,5-Cmce-1 24 1 KIBCAA

† Obtained by ‘cluster representation’.



works should be processed. This would be a large task; here we

consider only some examples of the NRG binodal nets found

in organic and metal-organic frameworks. To find the exam-

ples reported in Tables 5–7 we have automatically generated

the standard representations for 2131 three-dimensional

metal-organic polymeric frameworks and 2473 hydrogen-

bonded organic and metal-organic frameworks: their net

topology identifications are currently contained in the TTO

collection. If the standard representation gives unknown

topology, we applied a newly designed TOPOS procedure for

an automated search for clusters of nodes in augmented or

decorated nets. After contracting such clusters to their

centroids, the resulting net contains only the centroids of the

clusters and edges connecting them; we will call this cluster

representation (details on the procedure will be discussed in a

future publication).

According to Table 3, many binodal nets with mixed coor-

dination play a significant role in the NRG. Among them there

are 4,6-coordinated nets not considered by Ockwig et al.

(2005). Examples for the sqc374 net are still unknown, but we

have found two fsg nets of hydrogen-bonded organic mole-

cules (JIKHOA and THYMDN01), as well as two organic

hydrogen-bonded (WELMEF and a threefold array in

TIJKOM) and 25 metal-organic frameworks with the fsc

topology (Table 5 and Fig. 1). It is important that many novel

binodal nets derived from fsc have been revealed among

crystal structures as well. This fact proves that the fsc motif

plays a significant role in metal-organic frameworks.
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Table 6
Eleven hydrogen-bonded and 102 metal-organic frameworks with topologies of some new subnets derived from nets with a large NRG.

The refcodes for hydrogen-bonded frameworks are given in italics.

Topology
Transitivity
pq No. Refcode from CSD†

alb-3,6-C2/c 23 1 SUYGAU‡
alb-3,6-P42/mnm 22 3 HENYUV, HESVOR, SAQYOZ
alb-4,8-P42/mmc§ 21 1 PUWDAM
alb-4,8-P21/c 24 3 LIOXAT, MAQDUD, RORQOE
alb-4,8-Pbcn 24 4 JESCEQ, MUQSIA, MUQSOG, MUQSUM
alb-4,8-Pnma 24 1 WUTLOM
alb-5,10-P21/c 25 2 EQUWIW, IWERAD
bbe-3,4-Cmmm 23 4 IBIJAF, JUPFOP, RUJVAT, YUTCEV
cbs-3,3-C2/m-1 25 1 AXUDUS
cbs-3,3-Pmna 25 1 UJUXOM
cbs-4,4-Imma-2 25 1 DOSJAW
crb-e-3,4-P41212 25 1 HATZOS
crs-d-3,5-Pnma 23 8 DODWEY, GIZYOD, GIZYUJ, HUSPAM, RARYIT,‡ RARYOZ,‡ RARYUF,‡ WIKXUJ
fit-e-4,4-C2/m 24 1 QEJDIS
fsg-3,4-C2/c 25 1 NIBNAO
fsx-4,5-P21212 25 3 DEHBIC, MAYXUG, MAYYAN
fsx-4,5-R�33m 23 3 HYXBUR10, YETPOD, YETRAR
fsx-3,4-C2/c-1 24 1 RUFLIN
fsx-3,4-C2/c-2 24 1 MEVBIZ
fsx-3,4-Pccn 24 1 PENZUE
fsx-4,5-P63/mmc 23 1 LECHUX
fsx-4,5-C2/c 25 1 LOQVOC
fsx-4,5-Cmce-1 24 1 YALYIU
fsx-4,5-Cmce-2 24 1 ACUTOI
nbo-x-d-4,4-C2/m 24 1 QEQSIP
nbo-x-d-4,4-I41/amd 23 1 DEQFOU
nia-4,4-Pbca 24 3 CEJRUE, NEHMET, WINJOS
nia-5,5-P21/c 25 3 FELRUJ, IZAVUA, QAJLAP
seh-4,6-Imma 22 25 AHEFAU, EBITUF, FEJHOS, GUSNEN, GUXQEV, IDIWIB, IDIWOH, MAYJOM, MINVOU,

MINVUA, NENXIO, PARPII, PARPUU, PEPLAY, PEPLEC, PEPLIG, PEPLOM, SABVOH,
SABVUN, SABWAU, VELVEO, WESYAV, WESYEZ, YAXBOP, YAXBUV

seh-3,5-Cmc21 23 6 BAHGUN, QERZUI, RIGGIY, UFUMUD, UFUNAK, UFUNIS
seh-3,5-P21/c 24 6 ACUBOP, BIDZAQ, DEGSIS, NEGDOT, NENDEQ, PEXSOB
seh-3,5-P43212 23 6 BUYROC10, DIWFIY, QUKJEL, WEWTOI, WOGFED, XALXIS
seh-3,5-Pbca 24 2 MAPFOY, QAMNOI
seh-3,5-Pna21 24 1 LUNVUL
seh-4,6-P21/c-1 25 1 CUCITD01
seh-4,6-P21/c-2 25 1 IKEWIE
seh-4,6-P21/c-3 25 1 LELXAC
seh-5,7-P21/c 26 1 INIZAG
sqc502-4,5-P42/mnm 23 2 MUTNAQ, TEGMOH
sqc502-3,5-P43212 25 1 ACAZEK
sta-4,4-Cccm 22 1 EMAYUM
stb-4,4-P2/c 24 1 VASBUN (2)
stb-5,6-C2/m 23 4 IDAGOK, IDAGUQ, JEVTAG, XAKXAJ

† For interpenetrated arrays the number of nets is given in parentheses. ‡ Obtained by ‘cluster representation’. § Net with collisions.



Some nets with large NRG degrees have still not been

found in crystal structures, but their subnets can be rather

frequent (Table 6 and Fig. 6). It is relevant to note that all

frequently occurring nets from Tables 3–6 have small (21–24)

transitivities, which is in agreement with the ideas of Ockwig et

al. (2005). The nets producing many subnets from Tables 5 and

6, such as fsc, fsx and seh, also obey this condition. Note an

interesting example of a novel edge-transitive net but with

collisions (alb-4,8-P42/mmc), which is closely related to (4,4)-

pts, another edge-transitive net (see Fig. 7) [for more on nets

with collisions see Carlucci et al. (2007) and Delgado-

Friedrichs & O’Keeffe (2003)].

Table 7 contains all known examples of binodal edge-

transitive nets [13 out of 27 3–8-coordinated nets as well as

(6,12)-alb] in metal-organic frameworks. Thus, the data

confirm the assumption of Delgado-Friedrichs et al. (2006,

2007) about the importance of edge-transitive nets for crystal

chemistry.

Many nets from Tables 3 and 4 have not been found in

crystal structures so far, but not all known crystal structures
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Table 7
Four hydrogen-bonded and 152 metal-organic frameworks with topologies of binodal edge-transitive nets.

The refcodes for hydrogen-bonded frameworks are given in italics.

Topology
Node
degrees No. Refcode†

alb 6, 12 1 YADQUQ
bor (sqc975) 3, 4 1 TOJLOT (2)
cys 3, 6 2 PEXFAA, RIZXUT
flu (sqc169) 4, 8 12 CAZLEV, GAKSOB, JEXPEI, JEXPUY, MEWNAD, NAZDAU, NUXLUN, NUXMEY, TOBHAT, TOJVUJ, VADQAS,

YUGJEP10‡
gar (sqc11070) 4, 6 1 VEJZAM
nia 6, 6 17 AFOJEK, AHIJOQ, BIVWAE, BMSLAG, ERUPEM, FOFGUD, HAZBOA, JETNIF, JETNOL, KOVYAV, MOYBIL,

NIDQEX, NIDQIB, OFIRUQ, PIQSOX, RAQVIP, YEYMIY
pth 4, 4 4 GELVEZ, GELVID, SIYXIH, WIXJIW
pto (sqc5591) 3, 4 2 WILRAK, WILREO
pts (sqc183) 4, 4 84 AJAXOY, AQEQES, AQEQIW, ARUTIQ,‡ AVITUU, AVIVAC, AVIVEG, AVIVIK, AVIVUW, BALLOP (2), BEBCOB,

BECRUX, BEDJEA, BEGJUT, BOCKOT, CEVVEF, CEVVIJ, COHGPY, DAYMAS, DEKJAF, DIFCEB,‡ EGUHET,
EGUHOD, ETOQIN, ETOQOT, FAZRAA, FENROG, FEZPUV, FIJDAE, FITMAW, HICRUG, HUQMOV,
HUTZAX, IFABIA01, JEDJUY, KAPHOZ, LARBOW, LAXNII, LIDEGL, LIVTEP, MELKOD, MEMGAN,
MEZSAL, MIMRAB, NATNOM, NIKDAM, NIKDEQ, NIKDIU, NINHOH, OCETEW, OFUWIV02, PANMOH,
PAVLOO, PAVLUU, PAVMAB, PEQWAK, PIZJAJ (2), PIZJEN, RAHTAV (2), RAMHUI, REHRAY, SAQYIT,
SIVJAI, SUCCUR01, SUDBOI, TECFEM, UCUTIW, UFUKUB01, UGUQOC, UKAYIO, VOZHEX, WASVES,‡
WAZCAB, WEKXAM, WAWGOQ (2), WEBHEQ (2), WOZKUR, XATNIP, YARYEV, YARYIZ, YEMLOS,
ZEZGOA, ZUWMIN, ZZZGSA02

pyr 3, 6 10 CUXKEL, ITAPAU,‡ KEYYET,‡ KIBXEZ, KIBXID, KIBXOJ, LEMNOH, QEYWUN, QIGBIR,‡ YUBRUI
scu (sqc170) 4, 8 8 EVUDAA, ICIFEF (2), ICIFIJ (2), MECMEN, MEWNEH, NUXMAU, RAXMOT (2), RICGOA
soc 4, 6 3 IXIPEK,‡ IXIPIO,‡ IXIPOU‡
spn 3, 6 1 ICIZEZ
stp 4, 6 10 GUFWIN, GUFWUZ, ILIFUE, ILIGAL, ILIGEP, ITAHEQ, SERJOP, SERJUV, SERKAC, SERKEG

† For interpenetrated arrays the number of nets is given in parentheses. ‡ Obtained by ‘cluster representation’.

Figure 7
The two possible descriptions of the metal-organic framework observed in the crystal structure of PUWDAM, Zn2[tetrakis(4-carboxyphenyl)methane]:
on the left is the usually chosen edge-transitive (4,4)-pts net [nodes: Zn2(COO)4 paddle wheel and the tetrahedral ligand]; on the right a different
simplification that gives alb-4,8-P42/mmc, a rare edge-transitive net with collisions (nodes: the octa-oxygen donor ligand as 8-coordinated and the Zn as
4-coordinated).



have been topologically investigated. Moreover, there are

obviously other useful parameters related to the net global

topology besides the node coordination, coordination figure,

net transitivity and NRG degree mentioned by O’Keeffe et al.

(2000), Ockwig et al. (2005) and Blatov (2007). Attention

should be drawn to local topological features and to symmetry

relations in the net (Baburin & Blatov, 2007).

6. Concluding remarks

Our results show that the method for deriving subnets using

space-group–subgroup relations is most general and, in prin-

ciple, can be successfully applied to generate nets of any

coordination. Many of the resulting subnets occur in crystal

networks; the topological motifs that are important for crystal

chemistry can be found by analysis of the experimental crystal

data stored in electronic topological databases, taking into

account the information on net–subnet relations. In fact, this

approach opens a new phase in the development of crystal

science: the search for overall structure correlations on the

basis of all experimental data collected by structural chem-

istry. An important task at this stage is to extract the occur-

rence of nets in all crystal structures; a detailed analysis of the

occurrence will be presented in a future article.
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